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A solution of the problem of optimal stabilization of rotary motion of a 
gyrostat whose center of mass moves on an elliptic orbit in a central Newtonian 

force field is derived. A method of successive approximations for the deter - 
mination of optimal control is established. 

The problem of gyrostat stabilization with its center of mass moving on a circular 
orbit was solved in [l]. 

1. Let us consider an axisymmetric gyrostat with three flywheels moving in a 
central Newtonian force field (0, and 0 are, respectively, the centers of attrac- 

tion and of the gyrostat center of mass, Fig. 1). We shall investigate the relative 
motion of the gyrostat without taking into account its effect on the motion of the 
center of mass which is assumed specified ( a bounded problem). 

We use the following coordinate systems: system oz,z+r3 rigidly attached to the 
gyrostat whose axes coincide with the principal central axes of inertia, with flywheel 
axes lying on these axes; the inertial system 0,X,X,X, with X101X, the orbit 
plane; the Koenig axes o~‘z~‘z~’ whose oxa’ axis parallel to Ox3 is the axis of 

X2 
symmetry, and axes ozr’ and 05~’ in 
the plane X~O+ . In steady motion 

axes 0x1’ and oxa’ are parallel to 
axes OIX, and OrX,. The spherical 
system of coordinates R, a, ‘4, inwhich 
R is the distance between points 0, and 

o, Y is the angle between vector or0 

and the plane X10,X,, CD is the angle 
between the 0,X,-axis and the projec- 
tion of vector Or0 on the plane X,01X2, 
is related to the inertial coordinate system 

*i Xl by formulas 

Fig. 1 

X, = Rcos CD cos Y', X, = R sin cl, cos Y, X3 = R sin Y 

These coordinate systems are shown in Fig. 1, where cps is the angle between axes 

0% and 0x1’, and ‘p the angle between the plane X30,0 and the ox1 -axis. 

The principal central moments of inertia of the gyrostat relative to axes 0X&& 

are denoted by C, = C, = C and C3, and the moments of inertia of flywheels by 
I, = I, = I and I,. 

838 
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We assume that the gyrostat center of mass moves on an elliptic orbit with one of 
its foci at point O1. Motion of the gyrostat center of mass is ~~def~ed~spherical 
coordinates by formulas 

R= ’ 
i+ecos@ * 

QI = *(I + ecos<D)2 

yyyy\y’ 0, % = p&f1 
where P is the orbit parameter, e its eccentricity, p is the gravitational constant, 
and M, the mass of the attracting center. 

The equations of the gyrostat relative motion admit a uniform rotation at the relat- 
ive velocity w about the symmetry axis oXa normal to the orbit plane; the two fly- 
wheels whose axes are in the X10X2 plane are immobilized [l, 21, 

Projections of the body instantaneous angular velocity pl, pat p3 on axes 0xlX~Xa 
and of ql, qa, q9 on axes oxIIXS’XS’ are connected by the relations 

Pl ;= Ql COS rpl + $2 sin ($1, p’d =; --Ql sin VI f 42 COS ‘PI 

P3 = 43 + w’t 91’ = i + @Y33 

where pir are the directional cosines the system of coordinates oX1’Xa’Xg’ relative 
to 01X,X&3. 

The gravitational forces are determined by the force function whose approxi- 
mate expression is of the form [I, 2] 

where 44 is the gyrostat mass. 
Equations of the gytostat relative motion in Koenig’s axes are of the form CL 21 

Cql’ + (C3 - C) 4243 + C3CPr’Qa + 4283 - 4&a + gi = Mx~’ (LQ 

cq,’ + (C - C,k,q, - c3(P;s + MS - g&i + g,’ = KT 

C3 (Q3 + a’)’ + Q&a - Qzgi + g,’ = Mxa’ 

g,’ + ICI,’ + (g2 + Iqah,’ = Wi9 

g,’ + I!?a - (gr + I%)Cp, = Wav g3’ + I3 ((r3 + Cpl’)’ = w3 

PiI’ + 42&3 - 43fiia = 0 (i = 17 27 3) 

where gi (i = 1, 2, 3) are the kinetic momenta of flywheels relative to Koenig 
axes, Wi are cob01 moments, and MSi* are momenta of gravitational forces 
about the same axes. 

The considered steady solution is of the form 

‘pa‘ = 01 + 0, CD. = WI 
Qi = 0, fii) = 0, i ;f; j; filj = 1; i, j = 1, 2, 3 

gl = ga = 0, ga = g3”, WI = W2 = 0, gs” = --C& 

(X.2) 

me equations of motion (1.1) admit the first integrals 
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and the integrals that define the constancy of projections of the gyrostat kinetic 

moment on the system axes 0,X1X,X3 

Li -t (Cq, -i- t!*)Pil -k (C&-i- gABi i- [C3(c73 + cp~') + g3lBi3 = hi (1.3) 
L, = MR2 (Y sin @ - @ sin Y cos Y cos 0) 

L, = -MR2 (\y’ cos @ --I- Q’ sin ‘4’ cos Y sin Q) 

II, -= MR2@’ co.? ‘4 

hl” = 0, h,” = 0, h,” = Ml/G + C, (co1 -/- co) -+ g, 

Using (1.3) for eliminating gi from Eqs. (1. l), for the relative motion of the 

gyrostat we obtain equations of the form 

bY 

q2 jil (hi - Li) Pi3 + IcJCC,’ - W 

(C - I) q%’ = (C - I) q1’p1’- 

(Q3 + Cpl’) i$ (h - Li) Pi1 + Q1 ii (4 - Li) f3,3 + fvxx’ - WS 

Cc3 - j3)(43 + Cpl’)’ = 92 i$ (hi - Li) Bil - 91 jjl (hi - L,) Pi2 - W.9 

Assuming that motion (1.2) is unperturbed, we denote perturbations of variables 
/3ij’, qi’, hi’, Wit where 

fiij = pij’ (i # i)9 pii = 1 + pii’, Qi = Qi’ 
hi = hi’ (i = 1, 2), h3 = h,” - v/xp M + h,’ 

Wi = Wi’ (i = 1, 2), WQ = -(C, - I&,” + W3’ 

Omitting the primes, we write equations of perturbed motion as 

Q1’ = ‘lzQa - (hl3 + w*) 42 + O* i; hliaz + 
i=l 

(1.4) 

fh3v Sin 2@ + 2fi23v sin2 @ + u1 + Q1 

Qz’ = (‘13 + o*) Ql- hllq3 - W* ~ hliSil_ 
i=l 

2fb Cos2 @ - @BY sin 2@ + va + Qz 

43. = huh - M/1 + u3 + Q3 

@ii’ = Biiv i=l, 2, 3 

813’ = -qs + &3, 
B . 

831’ = -q3 i- Btl, f323’ = -ql + B,, 

81 = Qs + &l, f&s’ = %z + B13, @3,’ = q1 + B,, 

Bil = q&2 - qa$is, Ql= i$ hl#il + u1~ 
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QS = ii hiBit + US~, Q3 = i hxBi3 
i=l 

h,j = hj / (C - I), h3j = hj / (C, - I,), j = 1, 2 
Ia,, = (ho + h3) / (C - I), hs3 = (h” + h3) / (C, - 13) 
a* = co1 + w, v = 3/,~R-3 (C, - C) / (C - I) 

where Vi are control moments related to wi by formulas 

(C - I)v, = -wr + o*ISs 

(C - I)v, = -wz - o*hl, (C, - I,)v, = -w3 

Note that the order of smallness of Bij relative to qi and flij is not lower than 
the second. The terms U,s and use, due to gravitational moments and dependent 
only Oil $ij , vanish when fiij’ = 0 are also of the second order of smallness. 

The problem of optimal stabilization is formulated as follows. We have to 
determine control Vi in the form of functions of variables Qi and fiij SO that the 

trivial solution of system (1.4) is asymptotically stable with respect to variables qi, 
and fiij and that the condition of minimum of the integral type functional 

2. To solve the problem of stabilization we investigate the periodic solution of 

the linear inhomogeneous system of the form 

X’ = xd + A (t) x + q (t) (2.1) 

where x is a vector with components zi (i = 1,. . ., n), d = const is a parameter 
whose magnitude will be defined later, A (t) is an n x n periodic matrix of period 

T which satisfies the conditions of the theorem on the existence an uniqueness of 

solution of the differential equation, and cp (t) = co1 {qI (t),. . ., q,, (1)) is a periodic 

vector function of period T which has a bounded derivative. 
Let us prove that the estimate 

II x (t) + rp (t) 1 d I < c / @ (2.2) 

is valid for the periodic solution of that system. 
Consider the system 

zi’ = dzi + ‘pi (t), i = 1,. . ., n 

The periodic solution of the i -the equation is of the form 

T 
'Pitt) 

zi (t) = - -yj- in d-1 (1 + ,dT)-l 
s 

‘pi’ (t -i- E) Ed “-“dE, 

0 

We define the norm of x (t) as 

II x W II = 2 maxt I zi W I 
i=l 

Then 
11 x (t) + cp (t) / d II < ~1 / @, cl = II 9’ (t) It (2.3) 
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We use the method of successive approximations for determining the periodic solu- 
tion of the system, and introduce the small parameter E = 1 / d. The equation of 
the k -th approximation is of the form 

x’~ = x”d + A (t) xk-l + q (t), x” = x”d + cp (t) 

We shall show that the sequence xk (t) converges to x (t). Denoting xk (1) - 

xk-l( t) = y*l (t), for yL (t) we obtain 

yk ct) = (1 _ $T)-’ ’ _4 ct ;. 5) yk-’ (t 5) ,“.(T-:)d; (2.4) 

II Yii @) II < II A (t) II II Y:-i (t) II/d 

Hence for the convergence of the sequence it is necessary that [IA (t) II < d. For 
1) y” (t) )I we have the estimate 

II Y” (t) II < II-4 (t) II llcp (~1 II / (1% (2.5) 

using (2.4) and (2.5) we have for the remainder x (t) - x0 (t) the estimate 

1 x (f) - xc (f) 11 6 11 x (f) - . . . - xk (f) + Xk 0) - . . . - x0 (4 n < 

It follows from (2.6) and (2.3) that 

11 x (t) + cp (t) / d Jl f (II A (t)ll Ik(t)ll t- lb-f” (611) / d2 + 0 (0 (2.7) 

The inequality (2.2) has been thus proved. It is possible to show in a similar way 

the convergence of successive approximations by the substitution of variable r of the 

form dz / dt = o, (T) , where or (r) a positive periodic function of period T1 , for 

the independent variable t . 

3. Let us consider the linear system (1.4) without terms Qi, which has a zero 
solution. In conformity with [l] we specify the integrand of the minimized function- 

al in the form 

(3.1) 

F2 = (4n)-lk ( i &)/3ij)’ + 
Z=l i,j=l 

s 

[ c a* hliBil + hY (1 + CO.3 2@) + $sssin 2@ 
I 

x 
i=l 

(1 - COS 2@)] ( k O$)fiij) 
i, j=l 
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where F, and F, are positive definite quadratic forms with undetIned coefficients 
eij (@) and Uij(‘) (0) at variables qi and Bij , respectively (the positive de- 

finiteness of Fs is proved below). 
We seek an optimal Liapunov function v of the form [l] 

On the basis of theorems in [3,4] we obtain for v” the equation in partial deriva- 
tives 

$l, G -Bij + FI (qic 4)) f- Fx(Bijt @) + AI (qiv Bii, Q) = 0 

Hi = haQ3-(h3 + a*) Qa + W* i h&2 + (j13V sin2@ + 
&=I 

2b3v sin2 CD 

Equating to zero the coefficients at like second order terms, we obtain systems of 
linear differential equations for the determination of Uij(‘) (0) and an algebraic 

system for e-. ZJ . as functions of parameters m, n, k and a,. In particular, for 

a,,(‘! we have the equations 

C&i’,) 
- = &‘d- (h13 + 6P)&! + h33@- mv sin 2@ cl@ 
dug 

XT= c&b + (h13 + al*)&) - h&i",'- k + 2mv cos2@ 

dug) 
XT== t&i - hl2Ul’,’ + h&g 

0 - (h3 + a*) h33 

A(m)= I&13+0* 0 - ha1 

- hn h 0 d 
cp (CD,) = CO1 {- mv sin 2Ci,- k + 2mv cos2 CD, 0} 

where d = m / (2n). 
On the basis of estimate (2.7) we obtain 

a,,(‘) w my sin 2@ / d, a,,(2) z (k - 2mv COST@) / d, Q3) z 0 

The remaining oii(‘) are of a similar form. More exact values can be obtained by 
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using the method of successive approximations described in Sect. 2. 
Let us now prove the positive definiteness of’ v/” and pa . To determine the 

sign of Fs with an accuracy to the fmt order we pass from the dependent variables 
Bij to the independent Krylov angles in conformity with the relations 

B 1s = $7 831= - 4, /3s2 = 8, pss S -0 

B 12 = Bar = PII = Bss = fiss = 0 

The expressions for F2 in (3.1) and the obtained approximations of aij”’ (CD) 
yield 

F, = n {02Fz(1) + $eF2(2) - 4v0\l, (o*h,, - v)} (3.3) 
F,Ci) = 4ks j m2 - o*2h Ia2 - 4Vyi2 (V - o*h,,) 

y1 = sin @, Y2 = COS CD 

Separating in the expression for F, the complete square, we find that F, is 
positive definite when 

F2ci) > 0, i = 1, 2 (3.4) 

4k2 I m2 > o*2h H2? 4k2 I m2 > (w*h13 - 2v)2 

Let us show that the first two inequalities are equivalent to the two second ones. 

Let v (v - o*h,,) > 0, , then 

4k2 / m2 - o*2h 2 - 4v (v - w*h,,) yis > 

4k2 I m2 - (::hls - 2v)2 > 0 

i.e. we obtain the fourth inequality. If v (v - o*h,s) < 0 , then 

4ks / m2 - o*2h 2 - 4~ (V - O*hs) J’i2 > 

4ka I m2 - c?,~’ > 0 

Finally, for the positive definiteness of Fs we obtain 

2k 1 m > max~E[o,2n] I o*h13 I 
2k I m > max~E[o,nn] I o*h,, - 2v I 

The coefficients in form FI are of the form 

ell = nd2 -I- a,,(‘) - a32(l), e22 = nd2 + u31(2) - u,,t2) 

es3 = nd2 -1. a,,(3) - ~~~(3), &,, =: ~~$1) _ ~~~(1) _ a,,(3) + a,,(‘4 

2e23 = (h,, - h,,) m - a2,c2) + A,, - u13c3) + uglly) 

2e,, = (hs2 - h12)m - a,,(‘) + u,,(l) - u3,t3) + u,,‘~) 

(3.5) 

when d is fairly large the forms V” and F, are positive definite. When con- 
ditions (3.4) are satisfied the system is stable according to the first approximation. 

We select higher order terms h, of the form 

n,=_ - 
$r :; % 

On the basis of the theorem in [S] the control is of the form 
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ui = -(2n)-1dv” / aq, 

Let us consider the complete system that defines the gyrostat relative motion. 
Formula (3.2) derived for function p , obviously, solves the problem of stabiliza- 
tion by virhre of the complete system, if the quality criterion is of the form 

3 

Q2”= Qr- 
c 

QiG 
i=l 

t 

Since the order of supplementary terms is not lower than the third, the fixed sign 
property of Q2, is not violated. 

Thus the derived control 

Wl = (C - I)(@[ + (2n)_l i u$‘fJJ - (- 1)’ o*h,_l; 1 =I,2 
i,j=l 

Ws = (C, - 1s)(dQ3 + (2?2)-’ i Ug)& j) 
i, j=l 

ensures optimum stabilization of motion (1.2) when condition (3.5) is satisfied and the 
integrand is of the form (3.1). 

The author thanks S. N. Shimanov, his science tutor, for stating the problem and 

interest in this work. 
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